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Abstract

We compare various notions of approximations of sets. Several of them are one-sided versions
of existing notions. We devote a particular attention to the case where the approximating set is a
translated cone. We point out some consequences for nonsmooth analysis and optimization.
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1. Introduction

Numerous papers have been devoted to the approximation of functions; a comparatively
small number of papers deal with approximation of sets. Still several notions of approxi-
mation of sets have been introduced in the literature for various aims, either in a one-sided
way [22,23,28] or in a symmetric way [4,39,41,46,47]. The first appearance of a notion of
local approximation of a set goes back at least to the work of Lusternik (see [20]) who gave
conditions in order that the set of solutions of the nonlinear equation

f (x) = 0, (1)
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given by a mappingf : X → Y between two Banach spaces, is approximated around a
solutionx0 at whichf is differentiable by the set of solutions of the linearized equation

f ′(x0)(x − x0) = 0. (2)

As one can imagine, such a topic is of interest in mathematics and outside mathematics. As
a matter of fact, a number of practitioners linearize nonlinear phenomena without checking
the assumptions which would guarantee the validity of the approximation. Still, simple
examples show that without surjectivity of the derivative off at x0 or some condition
replacing this assumption, the local behavior of the solution setS of (1) may be very
different from the local behavior of the solution setS′(x0) of (2).

In [22,23,28], a notionof approximation is used togivenecessaryandsufficient optimality
conditions for some mathematical programming problems in infinite-dimensional spaces.
In [4,11,46,47], the authors have used the notions of approximation cone and of proto-
differentiability of sets to study the differentiability of the metric projection. In [13,15–17],
the Fréchet differentiability of a mapping between two normed vector spaces (n.v.s.’s) is
characterized with the help of a notion of conic convergence and a concept of Fréchet
approximating cone. In [39,41], the Hausdorff–Pompeiu distance is used to define a notion
of tangency for sets which can serve to study the stability of systems of inequalities. In a
companion paper [34], the differentiability and subdifferentiability of the distance function
to a closed subset is studied with the help of the notion of approximation.
Our aim in this paper is to introduce unilateral (or one-sided) approximation notions of

some known symmetric tangency concepts and to present a comparative study of the various
notions one can find in the literature.We show in Section 3 that almost all presented notions
are equivalent. Our approach is related to some recent notions of convergence for families
of sets, but we do not insist on this aspect, although it is important for applications (see,
for instance [5,6,7,32,33,36,37,45,49] for recent contributions and references). In Section
4, we give necessary conditions and sufficient conditions for the existence of an approxi-
mation cone, and we point out the links with proto-differentiability and B-differentiability,
two notions which have been extensively used for the study of variational inequalities and
generalized equations [25,27,42], etc. The remaining part of the paper is devoted to appli-
cations. In Section 5, we show that the existence of an approximating cone ensures equality
between the normal cone and the normal cone in the sense of Fréchet. Using some transver-
sality (or qualification) conditions, we give a criterion in order that the constraint set of a
mathematical programming problem is approximated by its linearizing cone; in fact our
study is more general and bears on the preservation of the approximation property under
some operations such as intersections and inverse images.
Let usmention briefly some othermotivations for the present study. Each of the problems

we mention requires a precise definition of the notion of approximation which is involved,
what justifies the comparison we undertake here.

(A) Let C be a closed convex subset of a n.v.s.E and letc1, c2 : [0, 1] → E which are
tangent at 0; under which conditions can one assert that the projectionsPC ◦ c1 and
PC ◦ c2 are tangent at 0? A similar question can be raised for thef-projections and
f-farthest point mappings in the sense of Pai and Govindarajulu[26] and for centers as
in Beer and Pai [8].
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(B) LetAbeanapproximationat somepointeof somesubsetSof a n.v.s.E.Letf : X → E

be a mapping from another n.v.s. intoE such that forx close to some pointx0 ∈ X

the pointf (x) has best approximationsa(x) ands(x) in A andS, respectively. Under
which conditions area(·) ands(·) tangent atx0?

(C) LetF andG be two set-valued mappings from a metric spaceX into some Euclidean
spaceE. SupposeG is an approximation toF at some pointx0 of X. Assume some
continuity conditions (such as in[12,18,38,52] for instance) ensuring the existence of
continuous selections ofF andG. Can one find continuous selectionsf andg of F and
G, respectively, which are tangent atx0?

(D) Given a set-valued mappingF from [0, 1] into some Euclidean spaceE and some
subdivision� of the interval[0, 1],one can define an approximationF� of F satisfying
natural conditions (see[2,53]). SupposeG is another set-valued mapping from[0, 1]
into E which is an approximation toF at 0 in the sense thatF andG are tangent at 0.
IsG� an approximation ofF� at 0?

Let us complete the indication of these tracks with a general observation. One of the
most remarkable advances of nonsmooth analysis and variational analysis during the last
decadeshasbeen to provideaunified treatment for the studyof functions, sets,mappingsand
multimappings (see for example [3,45]). The passages from one object to another one have
been particularly fruitful for what concern convergence questions, conditioning properties,
error bounds and infinitesimal analysis. Onemay expect that such a stream also is of interest
for approximation questions.

2. Preliminaries

In the sequelA, B andC are subsets of n.v.s.X, anda is a point in clA ∩ clB, where
clC denotes the closure of the setC.We will compare several notions of tangency ata for
A andB. Let us describe our notations.
The open unit ball ofX is denoted byUX i.e.UX := {x ∈ X : ‖x‖ < 1}. For x ∈ X and

r ∈ P := (0,+∞), we set:Ar = A ∩ rUX, and for a subsetB of X

dB(x) = d(x, B) = inf {d(x, y) : y ∈ B}
represents the distance fromx to the setB. By convention we set inf∅ = ∞ and sup∅ = 0.
TheHausdorff–Pompeiu excessof the setA over the setB is given by

e(A,B) = sup{d(x, B) : x ∈ A} .
TheHausdorff–Pompeiudistance between the setsA andB is given by

d(A,B) = max(e(A,B), e(B,A)).

And finally, for r ∈ P := (0,+∞), we set

er(A,B) = e(Ar, B), dr(A,B) = max(er (A,B), er (B,A)).

Givenε > 0 theε-conical neighborhoodof the subsetB of X is the set

Vε(B) = {x ∈ X : d(x, B) < ε‖x‖} ∪ {0} .
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If the setC is a cone, thenVε(C) is a cone and then our definition coincides with the notion
introduced or used in[15–17,21].
Before treating the question of approximations of sets, let us recall a familiar concept

of tangency for mappings. Given n.v.s.X andY, a subsetA of X, a ∈ clA, two mappings
g, h : A → Y suchg(a) = h(a) are said to be (Fréchet)-tangent at awith respect to (w.r.t.)
A if

lim
x(∈A\{a})→a

‖g(x)− h(x)‖
‖x − a‖ = 0.

The following definition has been introduced by Mignot[24] in connection with varia-
tional inequalities and used by several authors including Dontchev and Hager [14], Pang
[27], Robinson [43] for similar purposes or in view of an implicit function theorem (see
also [28]).

Definition 1. The mappingf : A→Y is said to beB-differentiable(or boundedly differ-
entiable) ataw.r.t.A if g given by

g(x) = f (x + a)− f (a)

is Fréchet-tangent at 0 w.r.t.A − a to some positively homogenous mapping denoted by
f ′(a)(.).

We observe that ifA = X and if f ′(a)(.) is linear and continuous, thenf is Fréchet-
differentiable ata. The just quoted papers have shown that a number of useful properties of
Fréchet-differentiability are preserved when one drops linearity.

3. Approximations of sets

In the present section we display various known notions of approximation for sets, intro-
duce some others and compare them. In[22,23,28] notions of approximations for sets are
introduced which are useful for necessary and sufficient optimality conditions of first and
second order, for mathematical programming problems in an infinite-dimensional space.
The following definition is an attempt to encompass these notions.

Definition 2 (Maurer [22], Maurer and Zowe[23] and Penot[28]). The subsetA of X is
said to beM–Z approximatedby the subsetB at a ∈ cl(A) if there exists a mapping
h : A → B which is tangent to the identity mappingIX of X ataw.r.t.A:

lim
x(∈A\{a})→a

‖h(x)− x‖
‖x − a‖ = 0.

We say that the setsA andB areM–Z tangent(or tangent in the sense of Maurer–Zowe ) at
a, if A is approximated byB ata andB is approximated byA ata.

The following notion has been introduced in[46,47] for studying the differentiability
of the metric projection in a normed space and the differentiability of the multifunctions.
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We introduce here a one-sided version of this concept which does not suppose thatB is a
translate of a cone; however, that case is the main case of interest.

Definition 3. The subsetA of X is said to beS-approximatedbyB ata ∈ cl(A) if

lim
x(∈A\{a})→a

d(x, B)

‖x − a‖ = 0.

The setsAandBareS-tangent(or tangent in the sense of Shapiro) ata if A isS-approximated
byB ata andB isS-approximatedbyA ata.

The following definition seems to be closely related to the preceding one. Here for a real
numberr we set:r+ = max(r, 0).

Definition 4. The subsetA of X is said to be boundedly approximated (in short
B-approximated)byB ata ∈ cl(A) if

lim
x(∈X\{a})→a

(d(x, B)− d(x,A))+
‖x − a‖ = 0.

The setsAandBare said to beB-tangent(or boundedly tangent) ata if A isB-approximated
byB ata andB isB-approximatedbyA ata.

Clearly, the setsA andB are B-tangent ata if only if A andB are tangent ata in the sense
of Auslender and Cominetti[4], or A–C tangent, i.e.

lim
x(∈X\{a})→a

| d(x,A)− d(x, B) |
‖x − a‖ = 0. (3)

The following notion has been introduced by Robinson[39] for the study of the stability
of some mathematical programming problems. We give here a one-sided version of his
concept.

Definition 5. We say that the setA isR-approximatedbyB ata ∈ cl(A) if

lim
r→0+

r−1er(A− a, B − a) = 0.

The setsA andB are said to beR-tangentata (or tangent in the sense of Robinson) if

lim
r→0+

r−1dr(A− a, B − a) = 0

i.e.A isR-approximatedbyB ata andB isR-approximatedbyA ata.

Although the following notion did not explicitly appear in the papers[15–17] it is clearly
in the spirit of these papers.

Definition 6. We say that the setA is F-approximatedbyB ata ∈ cl(A) if for eachε > 0
there exists� > 0 such that

(A− a)� ⊂ Vε(B − a).
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The setsA andB are said to beF-tangent(or tangent in the sense of Fabian) ata if A (resp.,
B) is F-approximatedbyB (resp.,A) at a.

If B = a + C, where the setC is a closed cone, then we obtain the concept of Fréchet
cone introduced in[15–17].
The last notion we present is a one-sided version of a concept suggested by Demyanov

(personal communication).

Definition 7. We say that the setA is D-approximated byB ata ∈ cl(A) if

lim
r→0+

r−1e((A− a)r , (B − a)r) = 0.

The setsA andB are said to be D-tangent (or tangent in the sense of Demyanov) ata if

lim
r→0+

r−1d((A− a)r , (B − a)r) = 0,

i.e. if A is D-approximated byB ata andB is D-approximated byA ata.

Let us start with a comparison between the notions of R-approximation and
D-approximation and consequently between the notions of tangency in the sense of
Demyanov and in the sense of Robinson.

Proposition 8. LetA andBbe two nonempty sets and leta ∈ clA∩clB.Then the following
implication holds:(i) �⇒ (ii )

(i) A is D-approximated by B at a;
(ii ) A is R-approximated by B at a.

Proof. Without loss of generality we suppose thata = 0. AsBr := B ∩ rUX ⊂ B, for
eachx ∈ Ar we haved(x, B)�d(x, Br), hence, taking the supremum onx in Ar ,

r−1e(Ar, B)�r−1e(Ar, Br)

and we obtain the implication announced above.�

Example. In general the implication(ii ) �⇒ (i) does not hold. Indeed, takeX = R and
for some decreasing sequence(εn)n∈N of (0, 1

4) with lim
n→∞ εn = 0 set

A = {
2−n : n ∈ N

} ∪ {0} and B = {
2−n(1+ εn) : n ∈ N

} ∪ {0} .
Let us show thatA is R-approximated byBat 0, but thatA is not D-approximated byBat 0.

For rn = 2−n, r ∈ (rn, rn−1] we have

er(A,B) = sup
p�n

d(2−p, B) = 2−nεn = rnεn

so that, forr ∈ (rn, rn−1], we get

r−1er(A,B)�r−1
n er (A,B)�εn.

HenceA is R-approximated byB at 0.
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However, forr ∈ (rn, rn(1+ εn)) we have

e(Ar, Br) = sup
p�n

d(2−p, Br) = 2−n−1(1− εn+1) >
1
2r(1− εn+1),

so that

r−1e(Ar, Br) >
1
2(1− εn+1) >

3
8.

Therefore lim inf
r→0+

r−1e(Ar, Br) > 0, andA is not D-approximated byB at 0.

Let us give conditions ensuring the equivalence between R-approximations and
D-approximations. These conditions require the following lemma, in which a setC is said
to bestarshapedat 0 if tc ∈ C for eachc ∈ C and eacht ∈ [0, 1].

Lemma 9. Let A and B be two closed subsets of X such that B is starshaped at0 ∈ A∩B.

Then,for any real numberr > 0, one has

e(Ar, B)�e(Ar, Br)�2e(Ar, B).

Proof. The first inequality follows from the inclusionBr ⊂ B. For proving the second one,
we will show that for each real numbers > e(Ar, B) we havee(Ar, Br)�2s.
For eachx ∈ Ar , there existsy ∈ B such that‖x − y‖ < s, so thaty ∈ (r + s)UX.AsB

is starshaped at 0, settingz := r(r + s)−1y, we have z∈ Br, ‖z− y‖ < s and

‖x − z‖�‖x − y‖ + ‖z− y‖ < 2s,

so that we getd(x, Br)�2s for eachx ∈ Ar , and consequentlye(Ar, Br)�2s. �

The following corollary is an immediate consequence of the preceding lemma. Here, a
setC is said to bestarshaped atc0 if c0+ t (c− c0) ∈ C for eachc ∈ C and eacht ∈ [0, 1].

Corollary 10. If B is starshaped at a,then the following assertions are equivalent:

(i) A is D-approximated by B at a;
(ii ) A is R-approximated by B at a.

Corollary 11. Suppose that A and B are starshaped at a. Then the following assertions are
equivalent:

(i) A and B are D-tangent at a;
(ii ) A and B are R-tangent at a.

Now we can state the main result of this section which completes the relationships
disclosed in[4] between assertions (2)–(4) of the statement.
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Theorem 12. Let A and B be two nonempty subsets of X and leta ∈ clA ∩ clB. Then the
following assertions are equivalent:

(1) A is MZ-approximated by B at a;
(2) A is S-approximated by B at a;
(3) A is B-approximated by B at a;
(4) A is R-approximated by B at a;
(5) A is F-approximated by B at a.

Under one of these assumptions we say that the set A is approximated by the set B at a(or
the set B is an approximation to the set A at a).

Proof. The implication(1) �⇒ (2) is immediate: ifh : A → B is Fréchet-tangent to the
identity mappingIX of Xw.r.t.A ata, then forx ∈ A we have

d(x, B)�d(x, h(x)) = o(‖x − a‖).
Conversely, let us consider the multifunctionH : X⇒X given by

H(a) = {a}, H(x) =
{
y ∈ B : ‖x − y‖ �d(x, B)+ ‖x − a‖2

}
for x �= a.

It has nonempty values, so that we can pick a selectionh of H. Then, forx ∈ A we have

‖h(x)− x‖�d(x, B)+ ‖x − a‖2 = o(‖x − a‖).
In order to deal with the other equivalences, let us introduce the functions�, �, � given

for r > 0 by

�(r) := sup
{
r−1d(x, B) : x ∈ A, ‖x − a‖ = r

}
,

�(r) := sup
{
r−1(d(x, B)− d(x,A))+ : x ∈ X, ‖x − a‖ = r

}
,

�(r) := r−1er(A− a, B − a)

and let us note the following immediate observation about the (upper) nondecreasing hull
�N of a function� : R −→ R+ := [0,+∞] which is given by

�N(t) = sup
{
�(s) : s ∈ [0, t ]

}
.

Obviously,�N is the least nondecreasing function majorizing� and we have lim
r→0+

�(r) = 0

if, and only if, lim
r→0+

�N(r) = 0.

The implications(3) �⇒ (2), (4) �⇒ (2) are consequences of the following obvious
inequalities:

���, ���.

Since forx ∈ A, x �= a such thats := ‖x − a‖ < r we have

r−1d(x, B)�s−1d(x, B)��(s)��N(s),

taking the supremum onA ∩ (a + rUX), we obtain

�(r)��N(r)

which shows that(2) �⇒ (4).
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Let us show that(4) �⇒ (3) by proving that�(r)�2�(2r).
We observe that forx ∈ X with r := ‖x − a‖ > 0 we have

d(x,A) = d(x − a, (A− a)2r )

since otherwise we could findu ∈ Awith ‖u− a‖ �2r such that‖x − u‖ < d(x−a, (A−
a)2r ) and asd(x − a, (A − a)2r )� ‖x − a‖ = r we would have‖u− a‖ � ‖u− x‖ +
‖x − a‖ < 2r, a contradiction.
Now, asd(., B) is Lipschitzian with rate 1, for anyx ∈ X with r := ‖x − a‖ and for

w ∈ A∩ (a+2rUX)we haved(x, B)−‖x − w‖ �d(w,B), hence, taking the supremum
onw, we obtain

d(x, B)− d(x − a, (A− a)2r )�e2r (A− a, B − a).

By what precedes we get

d(x, B)− d(x,A)�e2r (A− a, B − a);
it follows that�(r)�2�(2r).
We finish the proof by showing that(2) ⇐⇒ (5).Now (2) holds if and only if for each

ε > 0 there exists� > 0 such that for eachx ∈ A\{a} with ‖x − a‖ < � one has

d(x, B) < ε ‖x − a‖
or, for eachz = x − a ∈ (A− a) ∩ �UX = (A− a)� with z �= 0, one has

d(z, B − a) < ε ‖z‖
or

(A− a)� ⊂ Vε(B − a);
thus,(2) holds if and only if(5) holds. �

This result implies a symmetric version.

Corollary 13. Givena ∈ clA ∩ clB, the following assertions are equivalent:

(1) A and B are (M–Z)tangent at a;
(2) A and B are S-tangent at a;
(3) A and B are B-tangent at a;
(4) A and B are R-tangent at a;
(5) A and B are F-tangent at a.

When one of these assumptions is satisfied we say that the sets A and B are tangent at a.

Example. Let f, g : X → Y be two mappings between n.v.s., with graphsF,G, respec-
tively. If fandgare tangent atx, thenFandGare tangent ata := (x, f (x)) = (x, g(x)) : the
maph : (x, y) → (x, y−f (x)+g(x)) and its inverseh−1 : (u, v) → (u, v−g(u)+f (u))

are tangent to the identity mapping ataw.r.t.F andG, respectively. Conversely, ifF andG
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are tangent ataand if f andgare Lipschitzian, thenf andgare tangent atx.More generally,
if h : F → G is tangent toIX ataw.r.t.F and ifk is its first component, for(x, y) ∈ F one
hash(x, y) = (k(x), g(k(x))) and, if l is the Lipschitz rate ofg,

‖f (x)− g(x)‖ � ‖f (x)− g(k(x))‖ + ‖g(k(x))− g(x)‖
� ‖(x, f (x))− h(x, f (x))‖ + l‖k(x)− x‖
� (1+ l)‖(x, f (x))− h(x, f (x))‖.

One cannot drop the Lipschitz assumption, as the example of the functionsf, g : R → R

given byf (x) := √|x|, g(x) = 2
√|x| show.

Let us record for future use the following characterization of B-differentiability which is a
specialization of the preceding example. It encompasses previous results of Durdil[15,16].

Proposition 14. Let f : X → Y be Lipschitzian aroundx, and let h : X → Y be
a positively homogeneous Lipschitzian mapping. Then the setA := Graph(f ) and the set
B := (x, f (x))+Graph(h) are tangent ata := (x, f (x)) if, and only if,f is B-differentiable
at x with B-derivativef ′(x) = h.

If h is linear and continuous,then f is Fréchet-differentiable atx if A and B are tangent.

To conclude this section, we compare the previous different notions of tangency with the
notion of directional tangency.

Definition 15 (Auslender and Cominetti[4]). The subsetsA andB of X are said to be
tangent ata ∈ clA ∩ clB in the directionv ∈ X if

lim
t→0+ t

−1 | d(a + tv, A)− d(a + tv, B) |= 0.

They are said to bedirectionally tangentata if there are tangent in any directionv ∈ X.

One has the following relationship between these two concepts; we present the proof for
completeness.

Proposition 16(Auslender and Cominetti[4]). Assertion(i) below implies assertion(ii ).
If the n.v.s. X is finite-dimensional these assertions are equivalent

(i) A and B are tangent at a;
(ii ) A and B are directionally tangent at a.

Proof. (i) �⇒ (ii ) is immediate by considering the notion of B-tangency.
(ii ) �⇒ (i)Suppose that relation (3) does not hold. Then there existε > 0 and a sequence

(xn)n∈N converging toa, such that:

| d(xn,A)− d(xn, B) |> ε ‖xn − a‖ for anyn ∈ N.
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We settn := ‖xn − a‖ > 0, since ifxn = a the inequality does not hold. Letvn :=
t−1
n (xn − a). Then the preceding relation becomes:

| d(a + tnvn, A)− d(a + tnvn, B) |> εtn for anyn ∈ N.

SinceX is finite dimensional, we may assume that the sequence(vn)n∈N converges to
some unit vectorv. Since the distance function is Lipschitzian with rate 1, we may replace
vn by v in the last relation andε by a smallerε′. This is a contradiction with the definition
of directionally tangent sets.�

In general, ifX is an infinite-dimensional space, the implication(ii ) �⇒ (i) does not
hold. To see that, letA be the graph of a locally Lipschitzian mappingf : X → Y which
is not B-differentiable atx but is directionally differentiable atx i.e.

f ′(x, u) := lim
t→0+

t−1(f (x + tu)− f (x))

exists for allu ∈ X. Let B be the graph ofg : x �−→ f (x) + f ′(x)(x − x) which is
easily seen to be Lipschitzian. Then Proposition14 shows thatA andB are not B-tangent
at a := (x, f (x)). However, it is easy to show thatA anda + B are directionally tangent
ata. More precisely, one has the following lemma when the Lipschitz rate off aroundx is
not greater than 1.

Lemma 17(Agadi[1]). Under the preceding assumptions,for anyu ∈ X, v ∈ Y, one has:

d ′A((x, f (x)), (u, v)) = d((u, v), B) = ∥∥f ′(x, u)− v
∥∥

whered ′A is the directional derivative ofdA := d(., A) at (x, f (x)) in the direction(u, v).

4. Approximation cones and tangent cones

In this section, we consider the case in which the subsetA of X has an approximation at
a which is a translated cone. We extend finite-dimensional results of Shapiro[46,47] and
we study some consequences of the existence of an approximation cone.We first recall this
notion introduced by Shapiro [46,47] for the study of the directional derivative of themetric
projection.

Definition 18. A closed coneC of X is said to be an approximation cone to the setA ata,
if A anda + C are tangent ata.

Now let us recall some classical notions of tangent cones. From now on� denotes the
weak topology ofX (an arbitrary topology weaker than the norm topology could also be
considered).

Definition 19. The tangent cone (or contingent cone or Bouligand cone) to the setA at a
is the setT (A, a) of vectorsv ∈ X such that there exist sequences(tn)n∈N, (vn)n∈N in
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P := (0,∞) andX, respectively, such that lim
n→∞ tn = 0, lim

n→∞ vn = v, anda + tnvn ∈ A

for eachn ∈ N.

The weak tangent coneT �(A, a) is the set of vectorsv such that there exist bounded nets
(tn)n∈N, (vn)n∈N in P andX, respectively, such that limn tn = 0, limn vn = v for � and
a + tnvn ∈ A for eachn ∈ N.

The following variant corresponds to a classical notion too. It has an attractive kinematic
interpretation in terms of velocities of trajectories inA.

Definition 20. The incident cone (or adjacent cone or intermediate cone) to the setA ata
is the setT i(A, a) of vectorsv ∈ X such that for any sequence(tn)n∈N of P with limit 0
there exists a sequence(vn)n∈N of Xwith limit v such thata + tnvn ∈ A for eachn ∈ N.

It is well-known thatT i(A, a) andT (A, a) are closed cones withT i(A, a) ⊂ T (A, a);
furthermore

T i(A, a) =
{
v ∈ X : lim

t→0+
t−1d(a + tv, A) = 0

}
, (4)

T (A, a) =
{
v ∈ X : liminf

t→0+
t−1d(a + tv, A) = 0

}
. (5)

Definition 21 (Aubin and Frankowska[3], Auslender and Cominetti [4], Rockafellar [44])
The setA is said to be proto-differentiable (resp., pseudo-differentiable) ata if the incident
cone toA ata and the tangent cone (resp., the weak tangent cone) coincide, i.e.

T i(A, a) = T (A, a) (resp., Ti(A, a) = T �(A, a)).

In the first case one also says thatA is derivable ata and one writesA′(a) for the tangent
cone toA ata. If A is a closed convex set, thenA is proto-differentiable and in fact pseudo-
differentiable at anya ∈ A andA′(a) is the closure cl(R+(A− a)) of R+(A− a).

The next proposition describes a consequence of an approximation property for proto-
differentiability.

Proposition 21. Let A and B be two subsets of X. If A is approximated by B ata ∈ A ∩ B,
then the following inclusions hold:

(i) T i(A, a) ⊂ T i(B, a);
(ii ) T (A, a) ⊂ T (B, a);
(iii ) T �(A, a) ⊂ T �(B, a).

Proof. Immediate by using the Maurer–Zowe approach, for instance.�

The following corollary ensues; in view of relations (4), (5) its conclusions (i) and (ii)
are valid whenA andB are directionally tangent ata.

Corollary 22. If the sets A and B are tangent ata ∈ A ∩ B, then:

(i) T i(A, a) = T i(B, a);
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(ii ) T (A, a) = T (B, a);
(iii ) T �(A, a) = T �(B, a).

Thus, if the setsA andB are tangent ata ∈ A ∩ B, thenA is proto-differentiable
(resp., pseudo-differentiable) ata if, and only if,B is proto-differentiable (resp., pseudo-
differentiable) ata.
A necessary condition for the existence of an approximation cone can be derived from

the fact that the tangent cone to a closed cone at the origin is the cone itself.

Corollary 23. If the set A is approximated bya+C,with C a�-closed cone,then one has
T �(A, a) ⊂ C. If furthermore,the cone C is an approximation cone to A at a,then A is
pseudo-differentiable at a:

T i(A, a) = T �(A, a) = C.

It follows from this corollary that if the setA is approximated bya + T (A, a) ata, then
this approximation is optimal in terms of inclusion. It is not always the case that a set has
an approximation cone, as follows:

Example. LetA be the graph of Lipschitzian mappingf between two infinite-dimensional
spacesX andY, with ratek�1. We suppose that the directional derivativef ′(x, .) exists,
with

f ′(x, v) = lim
t→0+

t−1(f (x + tv)− f (x)),

but thatf is not B-differentiable atx. Let a := (x, f (x)). It is easy to see that (see Lemma
17 and [1]):

A′(a) := T i(A, a) = T (A, a) = graph(f ′(x, .))

i.e. the setA is proto-differentiable ata. However, we have seen thatA′(a) is not an approx-
imation cone to the setA ata.

However, in a finite-dimensional space, we have the following positive result.

Proposition 24. Suppose that X is finite dimensional. Then the set A is approximated by
a + T (A, a) at a.

This easy result is a consequence of amore general fact requiring the following definition
which is obviously satisfied by any set contained in a finite-dimensional space and by any
finite-dimensional submanifold of an arbitrary n.v.s.

Definition 25 (Penot[29]). The setA is said to be tangentially compact ata ∈ clA, if for
any sequence(an)n ofA converging toawith an �= a the sequence(‖an − a‖−1 (an− a))n
has a converging subsequence.
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The following example shows that a setAmay be tangentially compact atawithout being
locally compact ata.

Example. LetWbe a normed space and letA ⊂ X := W ×R be the epigraph of a function
f : W → R such thatf (0) = 0, f (w)/ ‖w‖ → +∞ asw → 0, w �= 0. ThenA is
tangentially compact ata := (0, 0).

Theorem 26. If thesetA is tangentially compact ata, thenA isapproximatedbya+T (A, a)
at a andT (A, a) is locally compact at0. Conversely,if A is approximated bya + T (A, a)

at a andT (A, a) is locally compact at0 then A is tangentially compact ata.

Proof. Suppose thatA is not S-approximated bya+ T (A, a) ata. Then there existsε > 0
and a sequence(xn) of A such that(xn) → a and

d(xn, a + T (A, a)) > ε ‖xn − a‖ for all n ∈ N.

We settn := ‖xn − a‖ (> 0) andun := t−1
n (xn − a). Then‖un‖ = 1 and the preceding

relation becomes

d(un, T (A, a)) > ε for all n ∈ N.

As the setA is tangentially compact ata, taking a subsequence if necessary, one can find
u ∈ X such that(un) → u asn →∞. Thenu ∈ T (A, a), a contradiction with the relation
d(u, T (A, a))�ε which stems from the Lipschitz property ofd(·, T (A, a)).
In order to prove thatT (A, a) is locally compact at 0 it suffices to show that any sequence

(un) of unit vectors ofT (A, a) has a converging subsequence. Given a sequence(εn) →
0 in (0, 1), we can findan ∈ A and tn ∈ (0, εn) such thatzn := un − t−1

n (an − a)

satisfies‖zn‖ < εn for eachn ∈ N. Then, t−1
n ‖an − a‖ < 2 and a subsequence of(

t−1
n ‖an − a‖ , ‖an − a‖−1 (an − a)

)
converges to some limit(q, u) ∈ [0, 2] × T (A, a).

The corresponding subsequence of(un) then converges toqu ∈ T (A, a).

Now let us prove the converse. Let(an) be a sequence ofA\{a} converging toa.
Let h : A → a + T (A, a) be tangent toIX on A, and letk(x) := h(x) − a. Then
k(an) = an − a + rnzn with rn := ‖an − a‖ , (zn) → 0. Then (r−1

n ‖k(an)‖) → 1
and sinceT (A, a) ∩ clUX is compact,(‖k(an)‖−1 k(an)) has a converging subsequence,(
r−1
n (an − a)

) = (
r−1
n k(an)− zn

)
has a converging subsequence too.�

A pleasant consequence of the existence of a convex approximation cone is the fact that
a number of tangent cones coincide. This result can be seen as a necessary condition for
the existence of a convex approximation cone. The tangent cones we consider are defined
as follows.

Definition 27 (Jofre and Penot[19], Penot and Terpolilli[35], Treiman[50,51]). Givena
∈ A theb-tangent coneT b(A, a) is the set ofv ∈ X such that for any sequence((rn, an))n
in P × A with limit (0, a) such that(r−1

n (an − a))n is bounded, there exists a sequence
(vn)n −→ v such thatan + rnvn ∈ A for all n. The set ofv for which this property holds
whenever(r−1

n (an − a))n converges (resp., converges to some element ofT i(A, a)) is
denoted byT p(A, a) (resp.,T q(A, a)).
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It is known thatT b(A, a), T p(A, a), T q(A, a) are closed convex cones satisfying the
following obvious inclusions:

T b(A, a) ⊂ T p(A, a) ⊂ T q(A, a) ⊂ T i(A, a) ⊂ T (A, a). (6)

Theorem 28. If A has a convex approximation cone C ata ∈ A then

T b(A, a) = T p(A, a) = T q(A, a) = T i(A, a) = T (A, a) = C.

Proof. If C is an approximation cone of the setA ata, then one hasT (A, a) ⊂ C. In view
of the inclusions (6) it suffices to show thatC ⊂ T b(A, a). Without loss of generality we
suppose thata = 0.
Let v ∈ C and let((rn, an))n be a sequence ofP × A with limit (0, 0) such that the

sequence(r−1
n an)n is bounded. By assumption, we can find a sequence(wn) with limit 0

in X such thatcn := an + rnwn ∈ C for eachn and a sequence(vn) with limit v in X such
thata′n := cn + rnvn ∈ A for eachn. Then

r−1
n (a′n − an) = vn + wn → v

and we have shown thatv ∈ T b(A, a). �

Let us observe that the existence of a convex approximation cone does not suffice
to ensure that the circa-tangent cone (or Clarke tangent cone)T ↑(A, a) := {v ∈ X :
lim t→0+,a′(∈A)→a(1/t)d(a′ + tv, A) = 0} coincides with the previous tangent cones.

Example. Let f be the even function of one real variable such that for a decreasing sequence
(rn) with limit 0 and such thatr−2

n (rn − rn+1) → 0 one hasf (rn) = r2n for evenn and
0 for n odd, f being affine on each interval[rn+1, rn]. Thenf is differentiable at 0 and the
epigraphA of f is approximated by the upper planeC at (0, 0) but the Clarke tangent cone
toAat(0, 0) is {0}×R+. Similar assertions hold for the even functionf given byf (0) = 0,
f (x) = x2 sin(1/x)2 for x �= 0.

Proposition 29. For a setA, a closed cone C anda ∈ A, among the following assertions
one has the implications(i) �⇒ (ii ) �⇒ (iii ) �⇒ (iv):

(i) C is an approximation cone to A at a;
(ii ) d(., A) is B-differentiable at a;
(iii ) d(., A) is directionally differentiable at a;
(iv) A is proto-differentiable at a.

Furthermore,when(i) holds one has

A′(a) = C = {
v ∈ X : d ′A(a, v) = 0

}
and d ′A(a, .) = d(., C).

Proof. (i) �⇒ (ii ) If C is an approximation cone toA ata thenA anda +C are B-tangent
ata, so that we have

lim
x(�=0)→0

| d(a + x,A)− d(x, C) |
‖x‖ = 0.
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As C is a cone, the distance functiond(., C) is positively homogeneous, so that this
relation shows thatdA is B-differentiable atawith B-derivatived ′A(a, ·) given by

d ′A(a, v) = d(v, C), v ∈ X.

(ii ) �⇒ (iii ) If a Lipschitzian map is B-differentiable, then it has a directional derivative
in any direction[48].
(iii ) �⇒ (iv) Let v ∈ T (A, a), then

0= lim inf
t→0+

t−1dA(a + tv) = d ′A(a, v) = lim
t→0+

t−1d(a + tv, A)

so we havev ∈ T i(A, a). �

Corollary 30. Let X be a Banach space such that for any subset A of X and anya ∈ A the
set A has an approximation cone C. Then X is finite dimensional.

Proof. Under the assumption, for any subsetA of X and anya ∈ A the setA has an
approximation coneC = A′(a) andd ′A(a, ·) = dA′(a)(·). Applying [9] Theorem 2, we get
thatX is finite dimensional. In fact,X = {0} since in any one-dimensional space one can
find a subset which is not proto-differentiable.�

We have seen that if an approximation cone to the setA at a exists, then it is unique
and it is the coneC := T i(A, a) = T (A, a). As a step to a converse, let us present some
conditions ensuring thata + T i(A, a) anda + T (A, a) are approximated byA ata.

Proposition 31. Let a ∈ A. If the distance functiond(., A) is B-differentiable at a,then
a+T (A, a) (and a fortioria+T i(A, a)) is approximated by A at a(A is an approximation
to the seta + T (A, a) at a).

Proof. Whend(., A) is B-differentiable ata, the setA is proto-differentiable ata and

T i(A, a) = T (A, a) = {
v ∈ X : d ′A(a, v) = 0

}
.

As d(x,A) = d ′A(a, x − a) + r(‖x − a‖), where lim
x(∈A\{a})→a

r(‖x − a‖)
‖x − a‖ = 0, for x ∈

a + T (A, a), we have d(x,A)= r(‖x − a‖), i.e.a + T (A, a) is S-approximated byA at
a. �

Proposition 32. Suppose thatT i(A, a) is locally compact at0. Thena + T i(A, a) is
approximated by A at a(A is an approximation to the seta + T i(A, a) at a).

Proof. As C := T i(A, a) is closed cone,C is locally compact at 0 if and only if there
existsr > 0 such thatC ∩ cl (rUX) is compact, if and only ifC ∩ SX is compact, where
SX = {x ∈ X : ‖x‖ = 1} . Suppose thata+C is not S-approximated byAata: there exists
ε > 0 andun ∈ C such that(un) → 0 and

d(a + un,A) > ε ‖un‖ for all n ∈ N.
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Let tn = ‖un‖ andvn = t−1
n un. We havevn ∈ C ∩ SX. AsC ∩ SX is compact, there is a

subsequence(vk)k of the sequence(vn)n and a vectorv ∈ C, such that(vk)k −→ v. Then
we get a contradiction with the relation

t−1
n d(a + tnv, A)�ε − ‖vn − v‖ for all n ∈ N. �

The following statement follows from the local compactness of the coneT (A, a) at 0
(Theorem26) and from the fact thatT i(A, a) is a closed subset ofT (A, a).

Lemma 33. If the set A is tangentially compact at a,thenT i(A, a) is locally compact
at 0.

The following corollaries are immediate consequences of the preceding results.

Corollary 34. If the set A is tangentially compact at a and if A is proto-differentiable at a,
thenC := T i(A, a) = T (A, a) is an approximation cone to the set A at a.

Corollary 35. If the set A is tangentially compact at a and if the distance functiondA(.) is
B-differentiable at a,then the set given by

C := {
v ∈ X : d ′A(a, v) = 0

}
is an approximation cone to A ata.

The following proposition generalizes results in[4,46] in whichX is a finite-dimensional
space. It is obtained by combining previous assertions.

Proposition 36. If the set A is tangentially compact ata ∈ A, then the following assertions
are equivalent:

(i) C := T (A, a) is an approximation cone to A at a;
(ii ) d(., A) is B-differentiable at a;
(iii ) d(., A) is directionally differentiable at a;
(iv) A is proto-differentiable at a.

Furthermore,one has

T i(A, a)= T (A, a) = C = {
v ∈ X : d ′A(a, v) = 0

}
,

d ′A(a, ·)= d(·, C).

The following example shows that in any infinite-dimensional space the preceding equiv-
alences fail ifA is not tangentially compact ata, even whenT (A, a) is locally compact.

Example. Let (un) be a sequence of the unit sphere of the infinite-dimensional spaceX
which does not have any cluster point and letA := {

2−nun : n ∈ N
}∪{0}. ThenT (A, 0) =

{0} andA is not approximated byT (A, a) ata = 0.
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5. Approximations and normal cones

It is the purpose of this section to show that an approximation property implies some
consequences on the normal cone, in particular that the normal cone coincides with the
normal cone in the sense of Fréchet.
We denote byX∗ the topological dual of the n.v.s.X. Thenormal coneto the setA at

a ∈ A is the coneN(A, a) given by:

N(A, a) = (T (A, a))0 = {
x∗ ∈ X∗ : 〈x∗, v〉 �0 ∀v ∈ T (A, a)

}
.

TheFréchet normal coneN−(A, a) to the setA ata is given by:

N−(A, a) =
{
x∗ ∈ X∗ : lim sup

x(∈A\{a})→a

〈
x∗, x − a

‖x − a‖
〉

�0

}
.

ClearlyN−(A, a) ⊂ N(A, a) : givenx∗ ∈ N−(A, a), for eachv ∈ T (A, a) with norm 1
one can find a sequence((rn, vn))n ⊂ P×X with limit (0, v) such thatan := a+ rnvn ∈ A

for eachn, so that(r−1
n ‖an − a‖) → 1 and〈x∗, v〉 = lim

n→∞
〈
x∗, r−1

n (an − a)
〉
�0, i.e.

x∗ ∈ N(A, a).

The following consequence of the approximation property is noteworthy.

Theorem 37. If the set A is approximated bya+T (A, a) at a,thenN(A, a) = N−(A, a).

Proof. Let x∗ ∈ N(A, a). As the setA is approximated bya + T (A, a) at a it is S-
approximated bya + T (A, a) ata

lim
x(∈A\{a})→a

d(x, a + T (A, a))

‖x − a‖ = 0.

So, for eachε > 0, there exists� > 0 such that for allx ∈ (A \ {a})∩ (a + �UX), there
existsv ∈ T (A, a) with ‖v − (x − a)‖ �ε ‖x − a‖ . Thus, one has〈

x∗, x − a
〉
�

〈
x∗, v

〉+ ε
∥∥x∗∥∥ ‖x − a‖ �ε

∥∥x∗∥∥ ‖x − a‖ ,
i.e. 〈x∗, ‖x − a‖−1 (x − a)〉 �ε ‖x∗‖ and, asε is arbitrary, one getsx∗ ∈ N−(A, a). �

6. Approximations and operations

In this section, we present a slight extension of an approximation result of Maurer–Zowe
[23] about an intersection and an inverse image. HereA := B∩g−1(C),whereg : X −→ Y

is B-differentiable ata ∈ A,with a Lipschitzian derivativeg′(a),XandYare Banach spaces
andB andC are arbitrary subsets ofX andY, respectively. In [23]B = X, C is a closed
convex cone andC ′ is the tangent cone toCatg(a); there it is shown thatA is approximated
by a + L(A, a), whereL(A, a) is the linearized cone ofA ata, given by:

L(A, a) := T (B, a) ∩ (g′(a))−1(T (C, g(a))).
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Moreover, the qualification condition used here is a tangential condition, hence is more
general than the condition used in[23].

Theorem 38. Suppose B and C are approximated bya + B ′ andg(a)+ C′, respectively,
and suppose that the following metric regularity condition(M) is satisfied

(M)

{ ∃ k > 0, r > 0 : ∀u ∈ B ′ ∩ rUX,

d(u, B ′ ∩ (g′(a))−1(C′))�kd(g′(a)(u), C′).

Then the set A is approximated byA′ := a + B ′ ∩ g′(a)−1(C′) at a.

Proof. Let us show thatA is S-approximated byA′ ata. Letb : B → a + B ′ be such that
b is tangent toIX w.r.t. B at a; let c : C → g(a) + C′ be tangent toIY w.r.t. C at g(a).
Let r(x) := g(x)− g(a)− g′(a)(b(x)− a), so that lim

x(∈B\{a})→a
‖x − a‖−1 r(x) = 0. For

x ∈ A we have

g′(a)(b(x)− a) = g(x)− g(a)− r(x) ∈ C − g(a)− r(x),

so that, forx ∈ A close enough toa, using (M) withu := b(x) − a ∈ B ′, we can find
h(x) ∈ A′ such that

d(b(x)− a, h(x)− a) � 2kd(g′(a)(b(x)− a)+ r(x), C′)+ 2k‖r(x)‖
� 2kd(g(x)− g(a), c(g(x))− g(a))+ 2k‖r(x)‖
= o(‖x − a‖),

so that‖x − h(x)‖�‖x − b(x)‖ + o(‖x − a‖) andh is tangent toIA ata. �

Corollary 39. Suppose X and Y are Banach spaces and g is Fréchet-differentiable at a.
Suppose B and C are approximated bya + B ′ andg(a) + C′, respectively,whereB ′ and
C′ are closed convex cones of X and Y,respectively. Suppose that the following condition
is satisfied:

(L) g′(a)B ′ − C′ = Y.

Then the set A is approximated byA′ := a + B ′ ∩ g′(a)−1(C′) at a.

Proof. Let us show that condition (M) is satisfied. Thanks to the Robinson and Ursescu
[40] open mapping theorem, condition (L) is satisfied if, and only if, there is some� > 0
such that:

UY ⊂ g′(a)(B ′ ∩ �UX)− C′ ∩ �UY . (7)

Now, givenu ∈ B ′,we can pickc′(u) ∈ C′ such thatd(g′(a)(u), c′(u))�2d(g′(a)(u), C′).
Using (7) and an homogeneity argument we can find someb′(u) ∈ B ′, c′′(u) ∈ C′ with∥∥b′(u)∥∥ � �

∥∥c′(u)− g′(a)(u)
∥∥ , ∥∥c′′(u)∥∥ ��

∥∥c′(u)− g′(a)(u)
∥∥ ,

c′(u)− g′(a)(u) = g′(a)b′(u)− c′′(u).
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Then we get, asu+ b′(u) ∈ B ′ ∩ g′(a)−1(c′(u)+ c′′(u)) with c′(u)+ c′′(u) ∈ C′,

d(u, B ′ ∩ g′(a)−1(C′))�‖u− (u+ b′(u))‖�2�d(g′(a)(u), C′).

It remains to apply the preceding theorem.�

TakingB ′ = co(T (B, a)) andC′ = co(T (C, g(a))) we deduce the following conse-
quence.

Corollary 40. Suppose that the sets B andC are pseudo-convex at a andg(a), respectively,
in thesense thatB ⊂ a+co(T (B, a))andC ⊂ g(a)+co(T (C, g(a))).Under condition(L),
withB ′ = co(T (B, a))andC′ = co(T (C, g(a))),the setA =B∩g−1(C) is approximated
byA′ = a + B ′ ∩ g′(a)−1(C′) at a.

The last corollary has been proved in[22,23], in the case whereB = X andC is a closed
convex cone, and under the regularity condition

(R) 0 ∈ int(g(a)+ g′(a)(B − a)− C)

which is more classical (see[41,28] for instance), but more exacting than condition (L).
The following proposition, close to results in [30], points out the interest for optimization

theory of the notions of approximation we considered. As there and elsewhere, we say that
a is aminimizer of order oneof a functionf onA if there exist some�,� > 0 such that

f (x)�f (a)+ � ‖x − a‖ ∀x ∈ A ∩ (a + �UX).

Proposition 41. Suppose the admissible set A is approximated at a by a set B and let
f, g : X → R be tangent at a w.r.t.B, with f locally Lipschitzian around a. If a is a
minimizer of order one of g on B,then it is also a minimizer of order one of f on A.

Proof. Without loss of generality we may supposea = 0,f (a) = g(a) = 0. Let � > 0 be
such thatg(v)��‖v‖ for v ∈ B, ‖v‖ small enough. Letkbe the Lipschitz rate off on some
neighborhood of 0 and leth : A → B be tangent toIX onA at 0. For any� > 0, � > 0 one
can find a neighborhoodV of 0 such that forx ∈ A ∩ V one has

‖h(x)− x‖ � �‖x‖,
f (x) � f (h(x))− k�‖x‖,

f (h(x)) � g(h(x))− �‖h(x)‖,
g(h(x)) � �‖h(x)‖,

so that, combining these inequalities one gets

f (x)�(�− �)‖h(x)‖ − k�‖x‖�((�− �)(1− �)− k�)‖x‖,
with � := (�− �)(1− �)− k� > 0, provided�, � have been chosen small enough.�

It follows that the notion of minimizer of order one is invariant under approximations of
the functions and the sets.
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