Available online at www.sciencedirect.com
JOURNAL OF
SCIENCE DIRECT® P -
@ Approximation
Theory

ELSEVIER Journal of Approximation Theory 134 (2005) 80—101 —
www.elsevier.com/locate/jat

A comparative study of various notions of
approximation of sets

Ali Agadi, Jean-Paul Penbt
Laboratoire de Mathématiques Appliquées, Université de Pau, UMR CNRS 5142, France
Received 1 April 1996; received in revised form 19 September 2004; accepted 6 October 2004

Communicated by P.B. Borwein
Available online 10 March 2005

Abstract

We compare various notions of approximations of sets. Several of them are one-sided versions
of existing notions. We devote a particular attention to the case where the approximating set is a
translated cone. We point out some consequences for nonsmooth analysis and optimization.
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1. Introduction

Numerous papers have been devoted to the approximation of functions; a comparatively
small number of papers deal with approximation of sets. Still several notions of approxi-
mation of sets have been introduced in the literature for various aims, either in a one-sided
way [22,23,28] or in a symmetric way [4,39,41,46,47]. The first appearance of a notion of
local approximation of a set goes back at least to the work of Lusternik (see [20]) who gave
conditions in order that the set of solutions of the nonlinear equation

J(x) =0, 1)
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given by a mappingf : X — Y between two Banach spaces, is approximated around a
solutionxg at whichf is differentiable by the set of solutions of the linearized equation

1/ (x0)(x — x0) = 0. 2

As one can imagine, such a topic is of interest in mathematics and outside mathematics. As
a matter of fact, a number of practitioners linearize nonlinear phenomena without checking
the assumptions which would guarantee the validity of the approximation. Still, simple
examples show that without surjectivity of the derivativefait xo or some condition
replacing this assumption, the local behavior of the solutionSsef (1) may be very
different from the local behavior of the solution $Btxo) of (2).

In[22,23,28], a notion of approximation is used to give necessary and sufficient optimality
conditions for some mathematical programming problems in infinite-dimensional spaces.
In [4,11,46,47], the authors have used the notions of approximation cone and of proto-
differentiability of sets to study the differentiability of the metric projection. In [13,15-17],
the Fréchet differentiability of a mapping between two normed vector spaces (n.v.s.’s) is
characterized with the help of a notion of conic convergence and a concept of Fréchet
approximating cone. In [39,41], the Hausdorff~Pompeiu distance is used to define a notion
of tangency for sets which can serve to study the stability of systems of inequalities. In a
companion paper [34], the differentiability and subdifferentiability of the distance function
to a closed subset is studied with the help of the notion of approximation.

Our aim in this paper is to introduce unilateral (or one-sided) approximation notions of
some known symmetric tangency concepts and to present a comparative study of the various
notions one can find in the literature. We show in Section 3 that almost all presented notions
are equivalent. Our approach is related to some recent notions of convergence for families
of sets, but we do not insist on this aspect, although it is important for applications (see,
for instance [5,6,7,32,33,36,37,45,49] for recent contributions and references). In Section
4, we give necessary conditions and sufficient conditions for the existence of an approxi-
mation cone, and we point out the links with proto-differentiability and B-differentiability,
two notions which have been extensively used for the study of variational inequalities and
generalized equations [25,27,42], etc. The remaining part of the paper is devoted to appli-
cations. In Section 5, we show that the existence of an approximating cone ensures equality
between the normal cone and the normal cone in the sense of Fréchet. Using some transver-
sality (or qualification) conditions, we give a criterion in order that the constraint set of a
mathematical programming problem is approximated by its linearizing cone; in fact our
study is more general and bears on the preservation of the approximation property under
some operations such as intersections and inverse images.

Let us mention briefly some other motivations for the present study. Each of the problems
we mention requires a precise definition of the notion of approximation which is involved,
what justifies the comparison we undertake here.

(A) Let C be a closed convex subset of a n.Esand letcy, ¢z : [0, 1] — E which are
tangent at Qunder which conditions can one assert that the projectigns ¢1 and
Pc o ¢ are tangent at 0? A similar question can be raised foif4hr@jections and
f-farthest point mappings in the sense of Pai and Govindarfgéland for centers as
in Beer and Pai [8].
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(B) LetAbe anapproximation atsome poatf some subse&ofan.v.sE.Letf : X — E
be a mapping from another n.v.s. irfosuch that forx close to some pointg € X
the point f (x) has best approximationgx) ands(x) in A andS, respectively. Under
which conditions are(-) ands(-) tangent aky?

(C) LetF andG be two set-valued mappings from a metric spxdato some Euclidean
spaceE. Supposes is an approximation t¢ at some pointg of X. Assume some
continuity conditions (such as [12,18,38,52] for instance) ensuring the existence of
continuous selections 6fandG. Can one find continuous selecticisndg of F and
G, respectively, which are tangent@®

(D) Given a set-valued mappinfg from [0, 1] into some Euclidean spade and some
subdivisions of the interval[0, 1], one can define an approximatiéh of F satisfying
natural conditions (sef2,53]). Supposé&s is another set-valued mapping frdi® 1]
into E which is an approximation t6 at O in the sense th&t andG are tangent at.0
Is G, an approximation of, at 0?

Let us complete the indication of these tracks with a general observation. One of the
most remarkable advances of nonsmooth analysis and variational analysis during the last
decades has been to provide a unified treatment for the study of functions, sets, mappings and
multimappings (see for example [3,45]). The passages from one object to another one have
been particularly fruitful for what concern convergence questions, conditioning properties,
error bounds and infinitesimal analysis. One may expect that such a stream also is of interest
for approximation questions.

2. Preliminaries

In the sequel,, B andC are subsets of n.v.X, anda is a point in clA N cl B, where
cl C denotes the closure of the setWe will compare several notions of tangencyador
AandB. Let us describe our notations.

The open unit ball oK is denoted byUx i.e.Uy :={x € X : ||x|| < 1}. Forx € X and
re P :=(0,4+00), we set:A, = ANrUy, and for a subse of X

dp(x) =d(x, B) =inf{d(x,y):y € B}

represents the distance frotio the setB. By convention we set inff = oo and sug = 0.
TheHausdorff—~Pompeiu exceséthe setA over the seB is given by

e(A, B) =sup{d(x, B) : x € A}.
TheHausdorff-Pompeidistance between the s&sndB is given by
d(A, B) = max(e(A, B), e(B, A)).
And finally, forr € P := (0, +00), we set
er(A, B) =e(A,, B), d.(A, B)y=maXe,(A, B), e-(B, A)).
Givene > 0 thee-conical neighborhooaf the subseB of X is the set

Ve(B) ={x € X :d(x, B) <¢l|x||} U{0}.



A. Agadi, J.-P. Penot / Journal of Approximation Theory 134 (2005) 80—101 83

If the setC is a cone, thel, (C) is a cone and then our definition coincides with the notion
introduced or used ifL5-17,21].
Before treating the question of approximations of sets, let us recall a familiar concept
of tangency for mappings. Given n.v¥andY, a subsef of X,a € cl A, two mappings
g, h: A — Ysuchg(a) = h(a) are said to be (Fréchet)-tangent awih respect to (w.r.t.)
Aif
lg(x) —h()|l 0
x(eA\lah—a  [lx —all

The following definition has been introduced by Migiia4] in connection with varia-
tional inequalities and used by several authors including Dontchev and Hager [14], Pang
[27], Robinson [43] for similar purposes or in view of an implicit function theorem (see
also [28]).

Definition 1. The mappingf : A — Yis said to beB-differentiable(or boundedly differ-
entiable) ag w.r.t. Aif g given by

g) = fx+a)— fla)

is Fréchet-tangent at 0 w.r& — a to some positively homogenous mapping denoted by
f(@Q).

We observe that i = X and if f'(a)(.) is linear and continuous, thdns Fréchet-
differentiable af. The just quoted papers have shown that a number of useful properties of
Fréchet-differentiability are preserved when one drops linearity.

3. Approximations of sets

In the present section we display various known notions of approximation for sets, intro-
duce some others and compare then{22,23,28] notions of approximations for sets are
introduced which are useful for necessary and sufficient optimality conditions of first and
second order, for mathematical programming problems in an infinite-dimensional space.
The following definition is an attempt to encompass these notions.

Definition 2 (Maurer [22], Maurer and Zowd23] and Peno{28]). The subse® of X is
said to beM-Z approximatedby the subseB at a € cl(A) if there exists a mapping
h : A — B which is tangent to the identity mappirdg of X ataw.r.t. A:
Ih@) —xll _
xEeA\(ah—a |lx —all '
We say that the sesandB areM—Z tangen{or tangent in the sense of Maurer—Zowe ) at
a, if Ais approximated by ata andB is approximated by ata.

The following notion has been introduced [#6,47] for studying the differentiability
of the metric projection in a normed space and the differentiability of the multifunctions.
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We introduce here a one-sided version of this concept which does not suppoBestiaat
translate of a cone; however, that case is the main case of interest.

Definition 3. The subsef of X is said to beS-approximatetby B ata € cl(A) if

d(x,B) _
x(eA\ah—a |x —all —

The set®\ andB areS-tangenfor tangent in the sense of Shapiroa#tA is S-approximated
by B ata andB is S-approximatedby A ata.

The following definition seems to be closely related to the preceding one. Here for a real
numbenr we setr, = max(, 0).

Definition 4. The subsetA of X is said to be boundedly approximated (in short
B-approximatedpy B ata € cl(A) if

(d(x, B) —d(x, A)) ¢
x(eX\{a})—a lx —all

=0.

The sets\ andB are said to b&-tangenior boundedly tangent) atif A is B-approximated
by B ata andB is B-approximatedy A ata.

Clearly, the seté andB are B-tangent & if only if AandB are tangent a in the sense
of Auslender and Cominetf#], or A—C tangent, i.e.

|d(x, A)—d(x, B)| _
x(eX\[a))—~a Ix —all -

0. ©))

The following notion has been introduced by Robin§8®] for the study of the stability
of some mathematical programming problems. We give here a one-sided version of his
concept.
Definition 5. We say that the s& is R-approximatedby B ata € cl(A) if

lim r~te,(A—a, B —a)=0.

r—04
The setsA andB are said to b&-tangentata (or tangent in the sense of Robinson) if

lim r1d,(A—a,B—a)=0

r—04

i.e.Ais R-approximatedby B ata andB is R-approximatedby A at a.

Although the following notion did not explicitly appear in the papds-17] it is clearly
in the spirit of these papers.

Definition 6. We say that the se¥ is F-approximatedy B ata € cl(A) if for eache > 0
there existg; > 0 such that

(A —a)y C Ve(B —a).
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The set andB are said to b&-tangent(or tangent in the sense of Fabianpat A (resp.,
B) is F-approximatedby B (resp.,A) at a.

If B =a+ C, where the se€ is a closed cone, then we obtain the concept of Fréchet
cone introduced ifil5-17].

The last notion we present is a one-sided version of a concept suggested by Demyanov
(personal communication).
Definition 7. We say that the s& is D-approximated by ata € cl(A) if

lim r~e((A —a),, (B —a),) = 0.

r—04
The setsA andB are said to be D-tangent (or tangent in the sense of Demyanavj at

lim »~1d((A — a),, (B — a),) =0,
r—04
i.e. if Ais D-approximated byd ata andB is D-approximated by ata.

Let us start with a comparison between the notions of R-approximation and
D-approximation and consequently between the notions of tangency in the sense of
Demyanov and in the sense of Robinson.

Proposition 8. Let A and B be two nonempty sets and:let cl ANcl B. Then the following
implication holds:(i) = (ii)

(i) Ais D-approximated by B at a;

(i) Ais R-approximated by B at a.

Proof. Without loss of generality we suppose that= 0. As B, := BNrUx C B, for

eachx € A, we haved (x, B) <d(x, B;), hence, taking the supremum gin A,,
r~Ye(A,, B)<r le(A,, B))

and we obtain the implication announced abovel

Example. In general the implicatiofii) — (i) does not hold. Indeed, také = R and

for some decreasing sequerneg),.cn Of (O, %1) with Iimoo &, = 0 set
A={2":neN}u{0} and B={2"(1+¢,):neN}U{0}.

Let us show thad\ is R-approximated b at 0, but tha# is not D-approximated bB at 0.
Forr, = 27", r € (rn, rp—1] We have

er(A, B) = supd(2?,B) =2""¢, = rpe,
p=n

so that, forr € (r,,, r,—1], we get
r~le, (A, B)<r;e.(A, B)<éy.

HenceA is R-approximated b3 at O
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However, forr € (r,, r, (1 + ¢,)) we have

e(A;, By) = supd(2 7, B,) = 27" Y1 — ep41) > 3r(L— enp1),
p=n

so that
rle(An, B) > 3(1—eu41) > 3.

Therefore lim infr—1e(A,, B,) > 0, andA is not D-approximated b at 0.

r—>0+

Let us give conditions ensuring the equivalence between R-approximations and
D-approximations. These conditions require the following lemma, in which @ sesaid
to bestarshapedt O if ¢ € C for eachec € C and each € [0, 1].

Lemma 9. Let A and B be two closed subsets of X such that B is starshajied dtn B.
Then,for any real number > 0, one has

e(A,, B)<e(A,, B))<2e(A,, B).

Proof. The firstinequality follows from the inclusioB, C B. For proving the second one,
we will show that for each real number> e(A,, B) we havee(A,, B,) <2s.

For eachx € A,, there existy € B such thaf|x — y|| < s, sothaty € (r +s)Ux.AsB
is starshaped at 0, setting= r(r + s) 1y, we have ze B,, ||z — y| < s and

lx —zll<llx =yl + llz = yIl < 2s,
so that we getl(x, B,) <2s for eachx € A,, and consequenty(A,, B,)<2s. O

The following corollary is an immediate consequence of the preceding lemma. Here, a
setCis said to bestarshaped atg if co+1(c — co) € C foreachc € C and each € [0, 1].

Corollary 10. If B is starshaped at ahen the following assertions are equivalent:

(i) Ais D-approximated by B at a;

(i) Ais R-approximated by B at a.

Corollary 11. Suppose that A and B are starshaped at a. Then the following assertions are

equivalent:

(i) A and B are D-tangent at a;
(i) A and B are R-tangent at a.

Now we can state the main result of this section which completes the relationships
disclosed if4] between assertions (2)—(4) of the statement.
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Theorem 12. Let A and B be two nonempty subsets of X and letcl A N cl B. Then the
following assertions are equivalent:

(1) Ais MZ-approximated by B at a;
(2) Ais S-approximated by B at a;
(3) Ais B-approximated by B at a;
(4) Ais R-approximated by B at a;
(5) Ais F-approximated by B at a.

Under one of these assumptions we say that the set A is approximated by the s¢bB at a
the set B is an approximation to the set A at a).
Proof. The implication(1) = (2) is immediate: ifr : A — B is Fréchet-tangent to the
identity mappinglx of X w.r.t. A ata, then forx € A we have
d(x, B)<d(x, h(x)) = o(llx —al)).
Conversely, let us consider the multifunctiéh: X = X given by
H@ =la), H@)={yveB:|x=y| <dtx.B)+lx—a?} forx+#a
It has nonempty values, so that we can pick a sele¢tiohH. Then, forx € A we have
1h(x) — x| <d(x, B) + lIx — all” = o(llx — al)),

In order to deal with the other equivalences, let us introduce the funetiofisp given
forr > 0 by

o(r) :==sup{r~td(x,B):x € A, |lx —al =r},
p(r) == Sup{r_l(d(x, B)—d(x,A)+:xe X, ||x —al = r} ,
p(r) :=r"te,(A—a, B —a)

and let us note the following immediate observation about the (upper) nondecreasing hull
On of a functionf : R — R, := [0, +o0] which is given by
On (1) = sup{0(s) : s € [0, 1]} .
Obviously,0y is the least nondecreasing function majorizérend we have Igmﬂ(r) =0
r—>Uyp
if, and only if, Iir(r)n On(r) =0.
r—Uyg
The implications(3) = (2), (4) = (2) are consequences of the following obvious
inequalities:

p=o, p>o.

Since forx € A, x # a such that := ||x — a| < r we have
rtd(x, B)<s~'d(x, B)<a(s)<on(s),

taking the supremum oA N (a + rUyx), we obtain
p(r)<an(r)

which shows that2) = (4).
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Let us show that4) — (3) by proving thatf(r) < 2p(2r).
We observe that fat € X with r := ||x — a]| > 0 we have
dx,A)=d(x —a, (A —a))

since otherwise we could finde A with |ju — a|| >2r suchthatlx — u|| < d(x—a, (A—
a)yy) and asd(x —a, (A — a)2,) < |lx —all = r we would have|lu — al| < |lu — x]|| +
lx —all < 2r, a contradiction.

Now, asd(., B) is Lipschitzian with rate 1, for any € X with r := ||x — a|| and for
w € AN(a+2rUx)we havel(x, B) — ||x — w| <d(w, B), hence, taking the supremum
onw, we obtain

d(x,B) —d(x —a,(A—a))<ey(A—a,B—a).
By what precedes we get
d(x,B) —d(x,A)<ex(A—a, B—a);

it follows that f(r) <2p(2r).
We finish the proof by showing th&?) < (5). Now (2) holds if and only if for each
e > O there existg > 0 such that for each € A\{a} with ||x — a|| < n one has

d(x,B) <¢el|x —al

or, foreacht =x —a € (A —a) NynUx = (A — a), with z # 0, one has
d(z, B—a) <ellzll

or
(A—a)y C Ve(B —a);

thus,(2) holds if and only if(5) holds. [

This result implies a symmetric version.

Corollary 13. Givena € cl A N cl B, the following assertions are equivalent:

(1) A and B are (M—Z}angent at a;
(2) A and B are S-tangent at a;
(3) A and B are B-tangent at a;
(4) A and B are R-tangent at a;
(5) A and B are F-tangent at a.

When one of these assumptions is satisfied we say that the sets A and B are tangent at a.

Example. Let f, g : X — Y be two mappings between n.v.s., with graghss, respec-
tively. If fandg are tangent &, thenF andG are tangentat := (x, f(x)) = (x, g(x)) : the
maph : (x,y) = (x, y— f(x)+gx))anditsinversé =1 : (u, v) — (u, v—gu)+ fw))
are tangent to the identity mappingaatv.r.t. F andG, respectively. Conversely, K andG
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are tangent a and iff andg are Lipschitzian, thehandg are tangent ai. More generally,
if h: F — Gistangenttdy ataw.r.t.F and ifkis its first component, fo¢x, y) € F one
hash(x, y) = (k(x), g(k(x))) and, ifl is the Lipschitz rate of,

ILf () =gl < I1f(x) = gk + [[g(k(x)) — g ()l
< G £ ) = A, fOI k() — x|
S A+DIG, f(x) = h(x, fOI.

One cannot drop the Lipschitz assumption, as the example of the fungtignsk — R
given by 1 (x) := J/Ix], g(x) = 2{/[x| show.

Let us record for future use the following characterization of B-differentiability whichis a
specialization of the preceding example. It encompasses previous results of| Dayihi.

Proposition 14. Let f : X — Y be Lipschitzian around;, and leth : X — Y be
a positively homogeneous Lipschitzian mapping. Then tha set Graph f) and the set
B := (x, f(x))+Graphh) aretangentat: := (x, f(x)) if, and only if f is B-differentiable
atx with B-derivativef’(x) = h.

If his linear and continuoughen f is Fréchet-differentiable atif A and B are tangent.

To conclude this section, we compare the previous different notions of tangency with the
notion of directional tangency.

Definition 15 (Auslender and Comineti#]). The subsetsA and B of X are said to be
tangent atz € cl A N cl B in the directionv € X if

lim Y| d(a+tv, A) —d(a +tv, B) |= 0.
t—0+

They are said to bdirectionally tangentta if there are tangent in any directione X.

One has the following relationship between these two concepts; we present the proof for
completeness.

Proposition 16 (Auslender and Cominet#]). Assertion(i) below implies assertiofii).
If the n.v.s. X is finite-dimensional these assertions are equivalent

(i) Aand B are tangent at a;

(i) A and B are directionally tangent at a.

Proof. (i) = (ii) is immediate by considering the notion of B-tangency.
(i) = (i) Suppose that relation (3) does not hold. Then there exis and a sequence
(xn)neN CONverging taa, such that:

| d(xp, A) — d(xn, B) |> ¢ |lxy —al| foranyn e N.
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We sett, := |lx, —all > 0, since ifx, = a the inequality does not hold. Let, :=
t71(x, — a). Then the preceding relation becomes:

| d(a + tyv,, A) —d(a + tyv,, B) |> et, foranyn € N.

SinceX is finite dimensional, we may assume that the sequéngen converges to
some unit vector. Since the distance function is Lipschitzian with rate 1, we may replace
v, by v in the last relation and by a smaller’. This is a contradiction with the definition
of directionally tangent sets.[]

In general, ifX is an infinite-dimensional space, the implicatioh = (i) does not
hold. To see that, leh be the graph of a locally Lipschitzian mappirfg: X — Y which
is not B-differentiable at but is directionally differentiable at i.e.

f1@ )= im T+ ) — ()

exists for allu € X. LetB be the graph ot : x — f(x) + f'(X)(x — X) which is
easily seen to be Lipschitzian. Then Propositldnshows tha#\ andB are not B-tangent
ata := (x, f(x)). However, it is easy to show thatanda + B are directionally tangent
ata. More precisely, one has the following lemma when the Lipschitz ratemfundx is
not greater than 1.

Lemma 17 (Agadi[1]). Under the preceding assumptiofs; anyu € X, v € Y, one has:
dy(®, f@). (. v) =d((u,v), B) = | f& u) - v]

whered/, is the directional derivative a4 := d(., A) at (x, f(¥)) in the direction(u, v).

4. Approximation cones and tangent cones

In this section, we consider the case in which the subAg#tX has an approximation at
awhich is a translated cone. We extend finite-dimensional results of SHdgi/] and
we study some consequences of the existence of an approximation cone. We first recall this
notion introduced by Shapiro [46,47] for the study of the directional derivative of the metric
projection.

Definition 18. A closed coneC of X is said to be an approximation cone to theAet a,
if Aanda + C are tangent ai.

Now let us recall some classical notions of tangent cones. From nawdamotes the
weak topology ofX (an arbitrary topology weaker than the norm topology could also be
considered).

Definition 19. The tangent cone (or contingent cone or Bouligand cone) to thé st
is the setT' (A, a) of vectorsv € X such that there exist sequences,cn, (Vn)nen N
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P := (0, o0) andX, respectively, such that lim, = 0, Iim v, = v, anda + t,v, € A
n—oo n—00
for eachm € N.
The weak tangent cor®’ (A, a) is the set of vectors such that there exist bounded nets
(t)neN, (V)nen in P andX, respectively, such that ligz, = 0, lim, v, = v for ¢ and
a + tyv, € A foreachn € N.

The following variant corresponds to a classical notion too. It has an attractive kinematic
interpretation in terms of velocities of trajectoriesiin

Definition 20. The incident cone (or adjacent cone or intermediate cone) to theatet
is the setl" (A, a) of vectorsv € X such that for any sequenc¢g),,cn of P with limit O
there exists a sequen¢s,),,cn Of X with limit v such that + 7,v, € A for eachn € N.

It is well-known thatT? (A, a) andT (A, a) are closed cones withi (A, a) C T(A, a);
furthermore

T'(A,a) = {veX: Iing tld(a+tv,A)=O}, (4)
t—04
T(A, a) = {v € X : liminf t~Yd(a +tv, A) = o} ) (5)
t—04

Definition 21 (Aubin and FrankowskE8], Auslender and Cominetti [4], Rockafellar [44])
The setA is said to be proto-differentiable (resp., pseudo-differentiable)fahe incident
cone toA ata and the tangent cone (resp., the weak tangent cone) coincide, i.e.

T (A,a) =T(A,a) (resp., T(A,a) =T’(A,a)).

In the first case one also says tAds derivable af and one writesi’(a) for the tangent
conetoAata. If Ais a closed convex set, théris proto-differentiable and in fact pseudo-
differentiable at any: € A andA’(a) is the closure ¢R, (A — a)) of R, (A — a).

The next proposition describes a consequence of an approximation property for proto-
differentiability.

Proposition 21. Let A and B be two subsets of X. If A is approximated byBeatA N B,
then the following inclusions hold:

(i) T'(A,a) C T'(B,a);
(i) T(A,a) C T(B,a);
(i) T°(A,a) C T?(B, a).

Proof. Immediate by using the Maurer—Zowe approach, for instance.

The following corollary ensues; in view of relations (4), (5) its conclusions (i) and (ii)
are valid wherA andB are directionally tangent at

Corollary 22. If the sets A and B are tangentate A N B, then:
(i) T'(A,a) = T'(B, a);
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(i) T(A,a) =T(B,a);
(i) T°(A,a) =T°(B,a).

Thus, if the setsA and B are tangent att € A N B, thenA is proto-differentiable
(resp., pseudo-differentiable) atif, and only if, B is proto-differentiable (resp., pseudo-
differentiable) ag.

A necessary condition for the existence of an approximation cone can be derived from
the fact that the tangent cone to a closed cone at the origin is the cone itself.

Corollary 23. If the set A is approximated lay+ C, with C as-closed conethen one has
T°(A,a) C C. If furthermore,the cone C is an approximation cone to A atfeen A is
pseudo-differentiable at a:

T(A,a) =T°(A,a) =C.

It follows from this corollary that if the sei is approximated by + T'(A, a) ata, then
this approximation is optimal in terms of inclusion. It is not always the case that a set has
an approximation cone, as follows:

Example. Let A be the graph of Lipschitzian mappifetween two infinite-dimensional
spacesX andY, with ratek <1. We suppose that the directional derivatj#/éx, .) exists,
with

f@v) = lim HfE+1v) - FX),
t—04

but thatf is not B-differentiable at. Leta := (x, f(x)). Itis easy to see that (see Lemma
17 and [1]):

A(a):=T'(A,a) = T(A, a) = graph f'(x, .))

i.e. the sefis proto-differentiable a. However, we have seen théif(a) is not an approx-
imation cone to the s& ata.

However, in a finite-dimensional space, we have the following positive result.

Proposition 24. Suppose that X is finite dimensional. Then the set A is approximated by
a+T(A,a)ata.

This easy resultis a consequence of a more general fact requiring the following definition
which is obviously satisfied by any set contained in a finite-dimensional space and by any
finite-dimensional submanifold of an arbitrary n.v.s.

Definition 25 (Penot[29]). The setA is said to be tangentially compactat cl A, if for
any sequencez, ), of A converging ta with a,, # a the sequencé|a, — al~Y(ay —a))n
has a converging subsequence.
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The following example shows that a getnay be tangentially compactatithout being
locally compact at.

Example. LetWbe a normed space and letc X := W x R be the epigraph of a function
f W — Rsuchthatf(0) = 0, f(w)/|lw] — 4+oc0casw — 0, w # 0. ThenAs
tangentially compact at := (0, 0).

Theorem 26. Ifthe set Aistangentially compactatthen Ais approximated a7 (A, a)
ataandT (A, a) is locally compact a0. Converselyif A is approximated by + T (A, a)
ataandT (A, a) is locally compact ab then A is tangentially compact at

Proof. Suppose thahis not S-approximated by + T'(A, a) ata. Then there exists > 0
and a sequenag,) of A such thatx,) — a and

d(xy,a+T(A,a)) > ¢l|lx, —al| forallne N.

We setr,, := ||x, — a| (> 0) andu,, := tn_l(xn —a). Then|u,|| = 1 and the preceding
relation becomes

d(u,, T(A,a)) >¢ foralln e N.

As the sefA is tangentially compact &, taking a subsequence if necessary, one can find
u € X such thafu,) — uasn — oo. Thenu € T (A, a), a contradiction with the relation
d(u, T(A, a)) >¢e which stems from the Lipschitz property @t-, T (A, a)).

In order to prove thaf' (A, a) is locally compact at O it suffices to show that any sequence
(u,) of unit vectors ofT' (A, a) has a converging subsequence. Given a sequepte>
0in (0,1), we can finda, € A andt, € (0,¢,) such thatz, := u, — tn_l(a,, —a)
satisfies|z,|| < &, for eachn € N. Then,r,,‘1 la, —all < 2 and a subsequence of
(t7Ylay —all, lan — all=* (an — a)) converges to some limiy, u) € [0, 2] x T (A, a).

The corresponding subsequencéigf) then converges tou € T (A, a).

Now let us prove the converse. Lét,) be a sequence aod\{a} converging toa.
Leth : A — a+ T(A,a) be tangent taly on A, and letk(x) := h(x) — a. Then
k(ay,) = a, —a + rpz, with r, := |la, —all, (z») — 0. Then (rn_1 lk(a)) — 1
and sincel’ (A, a) N cl Uy is compact(||k(an)|| "t k(an)) has a converging subsequence,
(rytan — @)) = (r, k(an) — z4) has a converging subsequence totl

A pleasant consequence of the existence of a convex approximation cone is the fact that
a number of tangent cones coincide. This result can be seen as a necessary condition for
the existence of a convex approximation cone. The tangent cones we consider are defined
as follows.

Definition 27 (Jofre and Penof19], Penot and Terpolilli[35], Treiman[50,51]). Givena

€ A theb-tangent cond’(A, a) is the set ob € X such that for any sequence,, a,))»

in P x A with limit (0, a) such that(rn_l(an — a)), is bounded, there exists a sequence
(vp)n —> v such thatw,, + r,v, € A for all n. The set ofv for which this property holds
whenever(rn—l(a,, — a)), converges (resp., converges to some elemerftiof, a)) is
denoted byI'”(A, a) (resp.,TY(A, a)).
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It is known thatT?(A, a), TP (A, a), T9(A, a) are closed convex cones satisfying the
following obvious inclusions:

TP(A,a) C TP(A,a) C TY(A,a) C T'(A,a) C T(A,a). (6)

Theorem 28. If A has a convex approximation cone Caat A then

T’(A,a) = TP(A,a) = TY(A,a) = T'(A,a) = T(A, a) = C.

Proof. If Cis an approximation cone of the seata, then one ha¥ (A, a) C C. In view
of the inclusions (6) it suffices to show th@tc T?(A, a). Without loss of generality we
suppose that = 0.

Letv € C and let((r,, a,)), be a sequence d x A with limit (0, 0) such that the
sequencer,jla,,),, is bounded. By assumption, we can find a sequéng¢ with limit O
in X such that,, := a, + r,w, € C for eachn and a sequenag,,) with limit v in X such
thata), := ¢, + ryv, € A for eachn. Then

-1
rya, — ap) = vy +w, —> v

and we have shown thate 7%(A,a). O

Let us observe that the existence of a convex approximation cone does not suffice
to ensure that the circa-tangent cone (or Clarke tangent ®®he),a) := {v € X :
im0, «/ca)—a(1/t)d(a + tv, A) = O} coincides with the previous tangent cones.

Example. Letfbe the even function of one real variable such that for a decreasing sequence
(r») with limit 0 and such that2(r, — r,+1) — 0 one hasf(r,) = r2 for evenn and

0 for n odd, f being affine on each intervgt, 1, r,]. Thenf is differentiable at 0 and the
epigraphA of f is approximated by the upper pla@eat (0, 0) but the Clarke tangent cone
toAat(0, 0) is {0} x R,.. Similar assertions hold for the even functiggiven by 1 (0) = O,

f(x) = x2sin(1/x)? for x # 0.

Proposition 29. For a setA, a closed cone C and € A, among the following assertions
one has the implication§) = (ii) = (iii) = (iv):

(i) Cisan approximation cone to A at a;
(i) d(., A) is B-differentiable at a;
(i) d(., A) is directionally differentiable at a;
(iv) Ais proto-differentiable at a.
Furthermore when(i) holds one has

Aa)=C={veX:djav)=0} and dja,.)=d(,C).

Proof. (i) = (ii) If Cis an approximation cone #datathenA anda + C are B-tangent
ata, so that we have
A) —
im |dla+x,4) —dx,O) | _

0.
x(#£0)—0 [lx]]
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As C is a cone, the distance functiel(., C) is positively homogeneous, so that this
relation shows thai, is B-differentiable at with B-derivatived), (a, -) given by

dy(a,v)=d(v,C), veX.

(i) = (iii) If a Lipschitzian map is B-differentiable, then it has a directional derivative
in any direction48].
(iii) = (iv) Letv € T(A, a), then

0=Ilim inf 1 Yda(a 4 tv) = d)(a,v) = lim ~d(a + tv, A)
t—04 t—04

sowe have € T/ (A,a). O

Corollary 30. Let X be a Banach space such that for any subset A of X and anx the
set A has an approximation cone C. Then X is finite dimensional.

Proof. Under the assumption, for any subgebf X and anya € A the setA has an
approximation con€ = A’(a) andd’, (a, -) = daa)(-). Applying [9] Theorem 2, we get
that X is finite dimensional. In factY = {0} since in any one-dimensional space one can
find a subset which is not proto-differentiable.]

We have seen that if an approximation cone to theAsata exists, then it is unique
and it is the con& = T' (A, q) = T(A,a). As a step to a converse, let us present some
conditions ensuring that+ 7' (A, a) anda + T (A, a) are approximated b ata.

Proposition 31. Leta € A. If th_e distance functio (., A) is B-differentiable at athen
a+T(A,a) (and afortioria +T' (A, a)) is approximated by A at @A is an approximation
tothe sets + T (A, a) at a).

Proof. Whend(., A) is B-differentiable at:, the setA is proto-differentiable a& and
T'(A,a) = T(A,a) = {v € X : d(a, v) = 0}.

Asd(x,A) = d)(a,x —a) +r(|lx —al), where lim M =0, forx €
. xEeMah—a lx —all
a+T(A,a), we have d(x, A= r(|lx — all), i.e.a + T(A, a) is S-approximated b at

a. U

Proposition 32. Suppose thaf’ (A, a) is locally compact a0. Thena + T'(A,a) is
approximated by A at A is an approximation to the set+ 7' (A, a) at a).

Proof. As C := T'(A, a) is closed coneC is locally compact at 0 if and only if there
existsr > 0 such thatC N cl (rUyx) is compact, if and only i N Sx is compact, where
Sy ={x € X : |lx|| = 1}. Suppose that + C is not S-approximated bi ata: there exists
¢ > 0 andu, € C such thatu,) — 0 and

da+u,, A) > ¢|lu,|| foralln e N.
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Lets, = ||u,| andv, = t,jlun. We havev, € C N Sy.AsC N Sy is compact, there is a
subsequencey); of the sequencév,), and a vectow € C, such thatvy)y —> v. Then
we get a contradiction with the relation

t;ld(a—i—tnv, A)>e —|lv, —v|| foralln e N. O

The following statement follows from the local compactness of the doie a) at 0
(Theorem26) and from the fact thaf’ (A, a) is a closed subset df(A, a).

Lemma 33. If the set A is tangentially compact at then 7/ (A, a) is locally compact
at0.

The following corollaries are immediate consequences of the preceding results.

Corollary 34. If the set A is tangentially compact at a and if A is proto-differentiable at a,
thenC :=T'(A,a) = T(A, a) is an approximation cone to the set A at a.

Corollary 35. If the set A is tangentially compact at a and if the distance funetjgn) is
B-differentiable at athen the set given by

C:={veX:dja, v) =0}
is an approximation cone to A at

The following proposition generalizes result44nd6] in whichX s a finite-dimensional
space. It is obtained by combining previous assertions.

Proposition 36. If the set A is tangentially compactate A, then the following assertions
are equivalent:

(i) C:=T(A,a)is an approximation cone to A at a;
(i) d(., A) is B-differentiable at a;
(i) d(., A) is directionally differentiable at a;
(iv) Ais proto-differentiable at a.

Furthermore,one has
T!(A,a)=T(A,a)=C = {ve X :d\(a,v) =0},
dy(a,)=d(, C).

The following example shows that in any infinite-dimensional space the preceding equiv-
alences fail ifA is not tangentially compact at even wherf' (A, a) is locally compact.

Example. Let (u,) be a sequence of the unit sphere of the infinite-dimensional space
which does not have any cluster pointanddet= {27 "u, : n € N}U{0}. ThenT (A, 0) =
{0} andAis not approximated by (A, a) ata = 0.
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5. Approximations and normal cones

It is the purpose of this section to show that an approximation property implies some
consequences on the normal cone, in particular that the normal cone coincides with the
normal cone in the sense of Fréchet.

We denote byX* the topological dual of the n.v.X. Thenormal coneto the setA at
a € Alisthe coneV(A, a) given by:

N(A,a) = (T(A,a)° = [x* e X*: (x*,v) <OVv e T(A,0)}.
TheFréchet normal con&/~ (A, a) to the sefA atais given by:

N (A, a) = {x*eX*: lim sup <x* i><0}.

reMah—oa\  llx —all

ClearlyN=(A,a) C N(A,a) : givenx* € N~ (A, a), for eachv € T(A, a) with norm 1

one can find a sequen¢e;,, v,)), C P x X with limit (0, v) suchthaty, ;= a+r,v, € A

for eachn, so that(r,; ! a, —al) — 1and(x*,v) = lim (x* 7, (a, —a)) <O, i.e.
n—oo

x*e N(A,a).
The following consequence of the approximation property is noteworthy.
Theorem 37. If the set A is approximated lay+ T'(A, a) ata,thenN (A, a) = N7 (A, a).

Proof. Let x* € N(A,a). As the setA is approximated by: + T(A,a) ata it is S-
approximated by + T (A, a) ata

d(x.a+T(A,a)

x(eA\{ah)—a lx — all

0.

So, for eachr > 0, there existg > 0 such that for alk € (A \ {a}) N (a +nUyx), there
existsv € T(A, a) with ||[v — (x — a)|| <& ||x — al| . Thus, one has

(x*,x —a) < (x*, v>+8 Hx*H lx —all <e ||x*|| lx —all,

i.e. (x*, |x —all "t (x —a)) <e|x*| and, ag is arbitrary, one gets* € N~ (A,q). O

6. Approximations and operations

In this section, we present a slight extension of an approximation result of Maurer—Zowe
[23] about an intersection and an inverse image. Here BNg~1(C), whereg : X — Y
is B-differentiable at € A, with a Lipschitzian derivative’(a), XandY are Banach spaces
andB andC are arbitrary subsets of andY, respectively. In [23B = X, Cis a closed
convex cone and” is the tangent cone © atg(a); there it is shown thak is approximated
bya + L(A, a), whereL(A, a) is the linearized cone & ata, given by:

L(A,a) :=T(B,a) N (g'(@) T (C, g(a))).
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Moreover, the qualification condition used here is a tangential condition, hence is more
general than the condition used[#8].

Theorem 38. Suppose B and C are approximateddoy B’ andg(a) + C’, respectively,
and suppose that the following metric regularity condit{®) is satisfied

3k >0,r>0:VYu e BNrUy,

(M) {dw,Ermgw»—%Onskﬂgunwxc»

Then the set A is approximated By :=a + B’ N g’(a)~1(C’) at a.

Proof. Let us show thaf is S-approximated by’ ata. Letb : B — a + B’ be such that
b is tangent toly w.r.t. Bata; letc : C — g(a) + C’ be tangent tdy w.r.t. C at g(a).

Letr(x) := g(x) — g(a) — g'(a)(b(x) — a), so that ( B\l{in}]) lx —al~tr(x) = 0. For
x(€ ag)—a

x € A we have
g@b(x) —a)=gx)—gla) —r(x)eC —gla) —rx),

so that, forx € A close enough ta, using (M) withu := b(x) —a € B’, we can find
h(x) € A’ such that

d(b(x) —a, h(x) —a) < 2kd(g'(a)(b(x) — a) + r(x), C") + 2k||r(x)||
< 2kd(g(x) — g(a), c(g(x)) — g(a)) + 2k|lr(x) ||
=o(||lx — al),

so that|x — A(x)|| <|lx — b(x)|| + o(|lx — a|) andhis tangent td 4 ata. [

Corollary 39. Suppose X and Y are Banach spaces and g is Fréchet-differentiable at a.
Suppose B and C are approximateddoy B’ andg(a) + C’, respectivelywhere B’ and

C’ are closed convex cones of X and&Spectively. Suppose that the following condition

is satisfied:

Ly g@B —C =Y.
Then the set A is approximated By := a + B’ N g’'(a)~X(C’) at a.

Proof. Let us show that condition (M) is satisfied. Thanks to the Robinson and Ursescu
[40] open mapping theorem, condition (L) is satisfied if, and only if, there is somed
such that:

Uy C g'(a)(B'NoaUx) — C'NaUy. @)

Now, givenu € B’, we can pick’(u) € C'suchthatl(g'(a)(u), ¢’ (u)) <2d(g'(a)(u), C).
Using (7) and an homogeneity argument we can find sbitae € B’, ¢’ (u) € C’ with
6’| < afld@) =g @], "] <a|c @) — g @ w)

() — g'(@)(u) = g'(@)b'(u) — " (u).

3
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Then we get, as8 + b'(u) € B’ N g'(a) " 1(c' (u) + ¢” (w)) with ¢/(u) + ¢ (u) € C’,
d(u, B'Ng' (@) HCN < llu — (u+ b W) <20d(g (@) w), C).

It remains to apply the preceding theorent.]

Taking B’ = co(T (B, a)) andC’ = co(T(C, g(a))) we deduce the following conse-
guence.

Corollary 40. Suppose thatthe sets B and C are pseudo-convex at@(andespectively,
inthesensetha c a+co(T (B, a))andC C g(a)+co(T (C, g(a))).Under conditior(L),
with B’ = co(T'(B, a))andC’ = co(T(C, g(a))),the setA = BNg~—1(C) is approximated
byA'=a+ B Nng'a)~1(C) ata.

The last corollary has been proved#2,23], in the case wher® = X andC s a closed
convex cone, and under the regularity condition

(R) Oe€int(g(a) +g'(@)(B—a)—C)

which is more classical (s¢41,28] for instance), but more exacting than condition (L).

The following proposition, close to results in [30], points out the interest for optimization
theory of the notions of approximation we considered. As there and elsewhere, we say that
ais aminimizer of order onef a functionf on A if there exist some, p > 0 such that

f@)=f@+allx —al Vxe AN+ pUy).

Proposition 41. Suppose the admissible set A is approximated at a by a set B and let
f,g : X — R be tangent at a w.r.tB, with f locally Lipschitzian around a. If a is a
minimizer of order one of g on Bhen it is also a minimizer of order one of f on A.

Proof. Without loss of generality we may suppase= 0, f(a) = g(a) = 0. Lety > 0 be
such thag (v) > y|lv| for v € B, ||v|| small enough. Lekk be the Lipschitz rate dfon some
neighborhood of 0 and lét: A — B be tangenttdy onAat 0. Forany > 0,0 > 0 one
can find a neighborhood of 0 such that forxr € A NV one has

IAGx) — x| < Blixll,
f(x) = f(h(x) —kBllx|l,
f(h(x)) = g(h(x)) = olh(),
gh(x)) = yhx)]l,

so that, combining these inequalities one gets
F)Z@ = )Nh)I —kBlxll = ((y =)L = B) —kp)llxll,
with o := (y — 8)(1 — p) — kp > O, providedf, é have been chosen small enougli]

It follows that the notion of minimizer of order one is invariant under approximations of
the functions and the sets.
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